

FG

Gas Filter DN15 ... DN300

FG

Gas Filter

Inhalt

Beschreibung	2
Eigenschaften	
Funktionsweise und Anwendung	3
Technische Daten	4
Durchflußkennlinien (Druckverlust)	6
Bestellinformation	8
Zubehör und Optionen	8
Normen und Zulassungen	

Beschreibung

Das Filter Typ FG ist ein Filter für Gasleitungen gemäß DIN 3386 mit sehr großer Rückhaltekapazität von Staub und Verunreinigungen. Es ist für den Schutz dahinter liegender Geräte geeignet.

Eigenschaften

Die Filter sind aus einer Aluminium-Druckgußlegierung gefertigt und decken einen großen Anschlußbereich von DN15 bis zu DN 300 ab.

Geeignet für den Betrieb mit Erdgas, Stadtgas, Flüssiggas (gasförmig) und Luft. Auf Anfrage können die Filter auch mit speziell für aggressive Gase geeigneten Dichtungen geliefert werden (COG).

Die eingebaute Filterpatrone besteht aus einem Stahlstützrahmen, der mit einem doppellagigen Hochleistungs-Filtervlies aus Polyolefinfasern bedeckt ist. Dieses Filtermaterial entspricht den Anforderungen von Feuerschutz-Klasse F1 gemäß DIN 53438 und ist selbstverlöschend.

FGS Filter besitzen dieselben Anschlüsse, sind jedoch kleiner als der Typ FG. Das Gehäuse ist kompakter und hat eine kleinere Filteroberfläche.

Die Modelle FGS1-FGS2 sind mit einer Siebfilter-Patrone ausgestattet.

Die Modelle FG98-FG910-FG912 besitzen eine 2-stufige, einlagige Filter-Patrone.

Manometeranschlüsse für Ein-und Auslass Kammer (optional für Gewinde-Modelle)

Alle Komponenten sind dafür ausgelegt, den in typischen Anwendungen auftretenden mechanischen, chemischen und thermischen Einflüssen zu widerstehen. Zur Verbesserung der mechanischen Stabilität, Dichtheit und Korrosionsbeständigkeit der Teile wurde wirkungsvolle Imprägnierung und Oberflächenbehandlung eingesetzt.

Die Filter sind 100% auf computergestützten Testanlagen geprüft und besitzen eine uneingeschränkte Garantie.

WARNUNG

Dieses Gerät ist in Übereinstimmung mit den geltenden Vorschriften zu installieren.

Funktionsweise und

Anwendung

Das Filter Typ FG ist zum Einbau in Gas- und Luftleitungen bestimmt, um dahinter befindliche Geräte zu schützen.

Die Filterpatrone aus einem Polypropylen-Filtervlies mit Metallstützrahmen eignet sich für den Schutz gegen Staub und andere Verunreinigungen mit einer Größe von ≥30µm.

Wenn die Filterkapazität erschöpft ist oder sich ein Anstieg beim Druckverlust einstellt, dann verliert das Filter seine Schutzfunktion. In diesem Fall ist die Filterpatrone zu ersetzen.

FGS1-FGS2 Modelle sind mit einer Siebfilter-Patrone (50µm) ausgestattet, die einfach ausgewaschen werden kann.

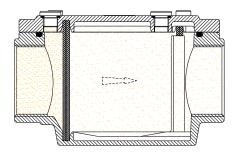


Abb.1

Abbildung 2 zeigt beispielhaft den Einbau.

- 1 = Kugelhahn
- 2 = Filter
- 3 = Druckregler
- 4 = Dichtheitskeitskontrolle
- 5 = Minimum Gasdruckschalter
- 6 = optische Ventilpositionsanzeige
- 7 = schnell öffnendes Magnetventil 8 = langsam öffnendes Magnetventil
- 9 = Dichtheitskontroll-Druckschalter
- 10 = Schließposition-Rückmeldung
- 11 = Manometer f. Brennergasdruck
- 12 = Druckknopf-Ventil

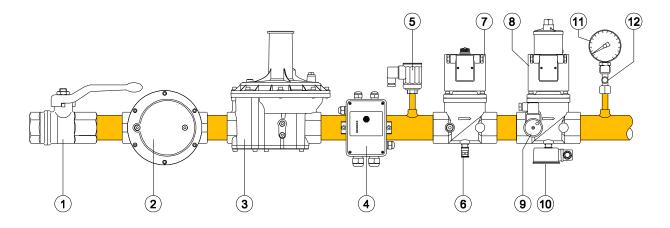
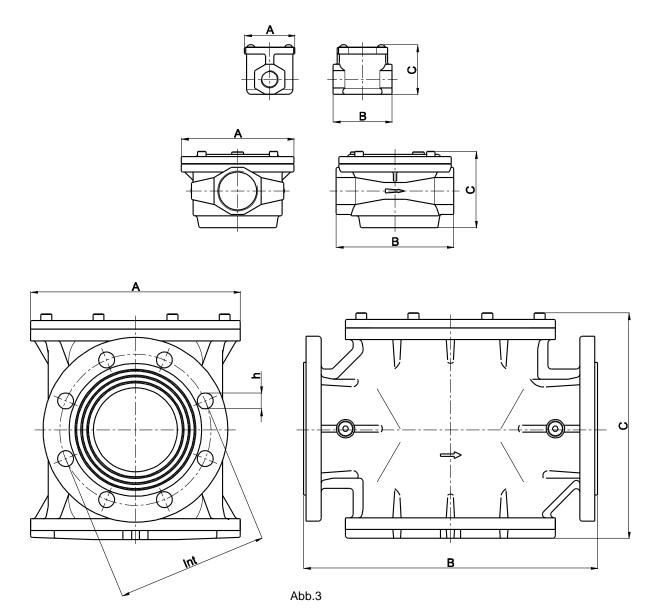


Abb. 2


Technische Daten

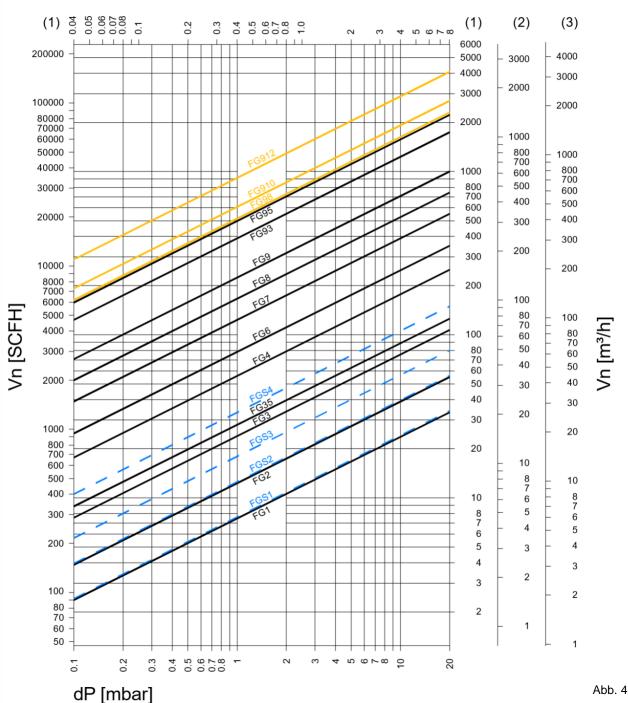
Tab. 1

Anschlüsse	Gasgewinde EN 10226-1 von Rp1/2 bis Rp2 ANSI-ASME B1.20 von 1/2"NPT bis 2"NPT Flansch PN16 – ISO 7005 von DN65 bis DN300 ANSI-ASA-ASME B16.5 class 150 from 2" to 10"			
Max. Betriebsdruck	2 bar (200 kPa) 6 bar* (600 kPa)			
Gehäuse Prüfdruck	3 bar (300 kPa) 9 bar* (900 kPa)			
Umgebungstemperatur	-40°C / +80°C (-40°F to +176°F)			
Durchflußkapazität	siehe Diagramm			
Filterweite Filterelement	≤ 50 µm (Siebfilter Patrone FGS1, FGS2) ≤ 30 µm (doppellagige Polypropylen Patrone) ≤ 5 µm (optional – Polypropylen Patrone)			
Filtrationsklasse	G4 gemäß EN 779			
Manometer-Anschlüsse (falls vorhanden)	Ein- und Ausgangskammer G1/8 bei Modellen mit Gewinde (außer FGS1-FGS2) G1/4 bei Modellen mit Flansch			
Installation	Horizontal und vertikal in der Leitung			
Geeignete Gasarten	Erdgas, Stadtgas, Flüssiggas (gasförmig) der Familie 1,2,3 biologisch erzeugtes Methan und Luft Auf Anfrage auch speziell für Kokereigas geeignet lieferbar.			
Materialien in Gaskontakt	Aluminumlegierung, Zink beschichteter Stahl, Polypropylen, PES, PE, anaerobes Dichtmittel, NBR			
Eigenschaften der J-Version	Umgebungstemperatur -20/+80°C Material in Gaskontakt: Aluminumlegierung, Zink beschichteter Stahl, Polypropylen, PES, PE, anaerobes Dichtmittel, NBR			

^{*}Nicht bei Modellen S1/2", S3/4", 8", 10" und 12"

Tab. 2

Modell	Anschlüsse	Durchfluß Faktor Kvs	Äußere Abmessungen [mm]					Gewicht	Filter- fläche
		[m³/h]	Α	В	C	Int	h	[Kg]	[cm²]
FGS1	Rp 1/2	6,8	60	70	60			0,24	17
FGS2	Rp 3/4	11	60	70	60			0,22	17
FG1	Rp 1/2	6,8	88	96	84			0,39	55
FG2	Rp 3/4	11	88	96	84			0,38	55
FGS3	Rp 1	16	88	96	84			0,36	55
FG3	Rp 1	22	134	140	91			0,97	145
FG35	Rp 11/4	26	134	140	91			0,91	145
FGS4	Rp 11/2	30	134	140	91			0,85	145
FG4	Rp 11/2	50	182	208	128			2,2	330
FG6	Rp 2	70	182	208	128			2,0	330
FG4 (1)	DN 40	50	182	260	165	110	4x18	3,6	330
FG6 (1)	DN 50	70	182	260	165	125	4x18	3,8	330
FG7	DN 65	110	200	308	212	145	4x18	8,5	535
FG8	DN 80	150	200	308	212	160	8x18	8,4	535
FG9	DN 100	200	250	350	265	180	8x18	13,5	860
FG93	DN 125	350	315	460	347	210	8x18	22,8	1540
FG95	DN 150	450	315	460	347	240	8x23	24,5	1540
FG98	DN 200	460	370	546	420	295	12x23	47	2760*
FG910	DN 250	550	405	600	466	355	12x28	69	3100*
FG912	DN 300	820	460	700	537	410	12x28	96	4200*


⁽¹) Flansch-Set (*) Filterfläche entspricht der Summe beider Stufen

Durchfluß-Charakteristik

(Druckverlust)

Formel zur Umrechnung von Luft auf andere Gase

 $V_{GAS} = k \cdot V_{LUFT}$

Tab. 3

Gasart	Spezifisches Gewicht ρ [Kg/m³]	$k = \sqrt{\frac{1.25}{ ho_{GAS}}}$
(1) Erdgas	0,80	1,25
(2) Flüssiggas (gasförmig)	2,08	0,77
(3) Luft	1,25	1,00

15°C, 1013 mbar, trocken

Da sich der Durchfluß im Diagramm auf den Arbeitsdruck anstatt auf Normbedingungen bezieht, ist der aus dem Diagramm abgelesene Druckverlust Δp mit dem Faktor

(1+ relativer Druck in bar):

zu multiplizieren

Beispiel:

Bei einem Filter mit einer Größe von 1 ½" und einem Erdgasstrom von 80 Nm3 / h beträgt der Druckabfall $\Delta p = 2$ mbar. Berücksichtig man, daß der Durchfluß bei 2 bar Gasdruck 80 m³ / h beträgt, dann ist der zu berücksichtigende effektive Druckabfall:

$$\Delta p = 2 \times (1 + 2) = 6 \text{ mbar}$$

Das Filter sollte gemäß den folgenden Überlegungen ausgewählt werden:

- Druckverlust Δp ≤ 10 mbar
- Strömungsgeschwindigkeit w ≤ 20 m/s

Normalerweise werden Druckverlust und Durchflußrate aus dem Diagramm abgelesen. Die Filter können jedoch auch durch Bestimmung der "Kvs Kennzahl" gemäß Tabelle 2 ausgewählt werden.

Die Filterauswahl erfordert die Berechnung von Kv unter Betriebsbedingungen.

Unter der Voraussetzung von unterkritischem Druckverlust

$$\Delta p < \frac{p_1}{2}$$

kann Kv mit der Formel:

$$Kv = \frac{V}{514} \sqrt{\frac{\rho(t+273)}{\Delta p \cdot p_2}}$$

berechnet werden, mit

V = Durchflußrate [Nm³/h] Kv = Durchflußzahl [m³/h] ρ = Dichte [Kg/m³]

p₁ = absoluter Eingangsdruck [bar]
 p₂ = absoluter Ausgangsdruck [bar]
 Δp = Differenzdruck p₁-p₂ [bar]
 t = Medientemperatur [°C]

Zum berechneten Kv Wert ermittelt unter Arbeitsbedingungen schlagen wir 20% hinzu, um den minimalen Kvs Wert zu erhalten, den das Filter haben sollte:

Beispiel:

Es wird ein Filter mit einer Kapazität von 100 m³/h Erdgas bei einem Druck von 2 bar und einer Temperatur von 15 °C gesucht, entsprechend 300 Nm³/h bei Standardbedingungen. Unter Berücksichtigung eines tatsächlichen Druckabfalls $\Delta p_{max} = 10$ mbar erhalten wir:

$$Kv = \frac{300}{514} \sqrt{\frac{0.8 \cdot (15 + 273)}{0.010 \cdot (1 + 2)}} = 51 \text{ m}^3/\text{h}$$

Das Filter mit Kvs > $(1,2 \times 51) = 61 \text{ m}^3/\text{h}$ ist die Größe 2", welches ein Kvs=70 m³/h gemäß Tabelle 2 besitzt. Durch Anwenden der inversen Formel erhält man den effektiven Druckabfall zu:

$$\Delta p = 5.2 \text{ mbar}$$

Bestellinformation Tabelle 4 FG 2 2 Α **Filter Typ** Größe S1 1/2" klein (1) **S3** kleinl S2 3/4" klein (1) **S4** 1"1/2 kleinl 3" 1 1/2" 2 3/4" 4" 9 3 1" 5" 93 35 1"1/4 6" 95 8" 1"1/2 (2) 4 98 6 2" 910 10" (³) 2"1/2 912 Max. Betriebsdruck 2 2 bar (30 psig) 6 6 bar (90 psig) Anschlüsse Rp Innengewinde / ISO Flansch Α Rp Innengewinde / ISO Flansch mit Manometeranschlüssen Ν NPT Innengewinde / ANSI Flansch NA NPT Innengewinde / ANSI Flansch mit Manometeranschlüssen Spezielle Ausführungen spezielle Dichtungen für aggressive Gase Κ spezielle Dichtungen mit Metallfilterpatrone HF Wasserstoff 5 µm Filterpatrone M **Z**1 FGS1-2 mit Vliespatrone

- (1) Nur für maximalen Betriebsdruck von 2 bar (30 psig) und ohne Druckprüfpunkte erhältlich
- (2) Flanschanschlüsse mit optionalem Kit
- (3) Nur für maximalen Betriebsdruck von 2 bar (30 psig) erhältlich

Zubehör und Optionen

Die Ein- und Ausgangsdruckkammer können mit Druckprüfpunkten zum Anschluss eines Gas Differenzdruckwächters zur Überwachung der Druckdifferenz versehen werden

Auf Wunsch können Druckprüfpunkt-Anschlüsse montiert werden (Montage erfolgt durch Anwender).

Die Modelle mit Gewinde 1 1/2" und 2" können mit Hilfe eines optionalen Bausatzes mit Flanschanschlüssen versehen werden.

Printed in Germany FG-FGS_d.pdf - 31.01.25 Seite 8/9

Normen und Zulassungen

Das Produkt entspricht den grundlegenden Anforderungen der folgenden europäischen Richtlinien und deren Änderungen:

2014/68/EU (Druckgeräterichtlinie) 2011/65/EU (RoHS II) CE-Reg.-No. PED/0497/2875/14

Das Produkt entspricht der technischen Verordnung RT UD 032/2013 von Russland, Belarus und Kasachstan

Zertifikat Nr.: CN № RU Д-IT.PA01.B.40716

Das Qualitätsmanagementsystem ist nach UNI EN ISO 9001 zertifiziert.

Die Informationen in diesem Dokument enthalten allgemeine Beschreibungen der verfügbaren technischen Möglichkeiten und basieren auf aktuellen Spezifikationen.

Änderungen an Spezifikationen und Modellen im Sinne von Designverbesserungen vorbehalten.

