

A Curtiss-Wright Company

• W

• Hi

LVDT DISPLACEMENT TRANSDUCERS

The Penny+Giles high performance ratiometric LVDTs benefit from our extensive experience in fly-by-wire control systems for flight critical aerospace applications. Using high integrity coil, screen and connection assemblies, combined with welded and vacuum brazed stainless steel construction, these LVDTs can be supplied in a range of shaft and body configurations to suit clutch, gearbox, engine and brake applications.

Featur	es Benefits
 No contact between the sensing element 	ts Virtually infinite life and fast dynamic response
Infinite resolution	• All displacement will be sensed
 Small transducer body length to stroke ratio 	Minimal operational footprint and weight
elded and vacuum brazed stainless steel construction	
Sealed to IP66	
 Temperature range -55 to +200°C 	Maximum reliability in hostile environments
gh integrity coil, screen and connection assemblies	
Screened and sheathed interface cable	High performance in electrically noisy environments
Temperature error less than 35ppm/°C	Maximises system accuracy

AF111LVDT

PERFORMANCE Electrical stroke E

OUTPUT SCHEMATIC

Ratiometric configuration

% total stroke/°C

The AF111 range of high accuracy LVDT displacement transducers have been
designed primarily for use in the ratiometric configuration and have a compact
size, with stroke lengths from 5mm to 150mm. Suitable for clamp mounting, the
AF111 range has a threaded, unguided core assembly to simplify installation.
Suited to numerous applications, such as vehicle research, and test rigs.

Electrical stroke E	mm	5	15	25	50	75	100	125	150
	±	2.5	7.5	12.5	25.0	37.5	50.0	62.5	75.0
Input voltage and frequer	псу	1 to 10	VRMS at	400Hz to	12.5kHz	(sinewave	e)		
Insulation resistance		Greater than 100M Ω at 500Vdc							
Operational temperature	°C	-35 to	-35 to +125						
Storage temperature	°C	-55 to +135							
Vibration		RTCA/I	00 - 160	C, Sectior	n 8, Fig 8	- 1 Curve	C (Rand	om), 10 -	2000Hz, 4.12g rms
		RTCA/I	DO - 160	C, Sectior	n 8, Fig 8	- 3 Curve	e L (Sine),	10 - 200	0Hz, 3g rms
Environmental protection	ion IP66								
Electrical output R proport to position	tional	$R = \frac{Va - Vb}{Va + Vb}$							
Electrical output R at extre from null ±1% tota		0.3	0.3	0.4	0.4	0.6	0.6	0.6	0.6
Non-linearity ±% tota	al stroke	0.25	0.25	0.25	0.25	0.25	0.125	0.125	0.125
Secondary coil output volt	age	3.3VRN	/IS maxim	num					
Input impedance		Greater than 300Ω							
Load resistance (per coil)		Greate	r than 50)k Ω (non r	eactive)				
Temperature error maxim	um								

0.0012 0.0012 0.0012 0.0018 0.0018 0.0035 0.0030 0.0030

DIMENSIONS					Din	nension C (mid	stroke)			
Note: drawings not to scale					Dimens	ion B				
				- j	18 max		Thread I 15.0 m			ø11.21/11.01
					<u> </u>		\$3.0	\mathbf{X}	_	
			star and a star a st						::::::::::::::::::::::::::::::::::::::	•}-
					max		-	=		
			screened	and sleeved	<u>8</u> 1		al diametral nce 0.45	$\frac{Va - Vb}{Va + Vb} =$	0	
				mm long onnected to case	:)		Retracted	Electrical stro		
Electrical stroke E	mm	5	15	25	50	75	100	125	150	
Mechanical stroke M (non captive shaft)	mm	9	19	29	54	79	104	129	154	
Dimension B	mm	55	65	80	105	150	175	215	240	
Dimension C	mm	75	90	110	147.5	205	242.5	295	332.5	
Weight (maximum)	g	45	50	55	67	90	100	120	140	
AVAILABILITY		Norma	ally availa	ble from	stock					

ORDERING CODE

Electrical stroke (total) mm

AF111/.....

ELECTRICAL CONNECTIONS See AF145 page 15

AF145LVDT

PERFORMANCE

The AF145 range of high accuracy LVDT displacement transducers have been designed primarily for use in the ratiometric configuration, and have a compact size, with stroke lengths from 5mm to 150mm. The AF145 has self-aligning rod end bearing mounting, with an outer sliding sleeve which protects the movable core whilst enhancing the rigidity of the transducer during operation. Suited to harsh automotive and industrial environments.

Electrical stroke E	mm	5	15	25	50	75	100	125	150
	±	2.5	7.5	12.5	25.0	37.5	50.0	62.5	75.0
Input voltage and frequency	1	1 to 10	VRMS at 4	400Hz to	12.5kz (si	newave)			
Insulation resistance		Greater than 100M Ω at 500Vdc							
Operational temperature	°C	-35 to -	+125						
Storage temperature	°C	-55 to -	+135						
Vibration		RTCA/D	O - 1600	C, Section	8, Fig 8	- 1 Curve	C (Rando	om), 10 -	2000Hz, 4.12g rms
		RTCA/D	O - 1600	C, Section	8, Fig 8	- 3 Curve	L (Sine),	10 - 200	0Hz, 3g rms
Environmental protection		IP66							
Electrical output R proportion to position	nal	$R = \frac{Va - Vb}{Va + Vb}$							
Electrical output R at extrem from null ±1% total s		0.3	0.3	0.4	0.4	0.6	0.6	0.6	0.6
Non-linearity ±% total s	troke	0.25	0.25	0.25	0.25	0.25	0.125	0.125	0.125
Secondary coil output voltag	e	3.3VRM	S maximi	um					
Input impedance	Greater than 300Ω								
Load resistance (per coil)		Greater than 50k Ω (non reactive)							
Temperature error maximun % total stro		0.0012	0.0012	0.0012	0.0020	0.0020	0.0030	0.0030	0.0030

OUTPUT SCHEMATIC

DIMENSIONS

Note: drawings not to scale

See AF111	page 14	

Electrical stroke E	mm	5	15	25	50	75	100	125	150
Mechanical stroke M (non captive shaft)	mm	9	19	29	54	79	104	129	154
Dimension C retracted	mm	100	110	125	150	195	220	260	285
Weight (maximum)	g	65	80	90	115	155	175	200	220

AVAILABILITY

Normally available from stock

ORDERING CODE

Electrical stroke (total) mm

ELECTRICAL CONNECTIONS

5 flying leads 24AWG, screened and sleeved 500mm long

Output Output Vb Va Yellow Green O O Blu	e
Retract + Core Ext	end
Input Black Red	

Phasing notes

With blue and black leads common, the output on the yellow lead will be in-phase with the red lead (input) as the shaft retracts from the null position.

Ø8mmlvdt Special

This specially developed ac LVDT is an example of our capability in producing an extremely compact size (8mm diameter) with a minimal footprint (20mm stroke within a 44mm body length). This LVDT is also suitable for continuous operation at temperatures up to +200°C and is ideally suited for use in clutch position and brake caliper position measurement in the premier classes of motor sport. For optimum performance this LVDT is designed to operate in the ratiometric configuration.

PERFORMANCE

Electrical stroke E mm	
±	
Input voltage and frequency	
Insulation resistance	
Operational temperature °C	
Environmental protection	
Electrical output R proportional to position	
Electrical output R at extremes from null ±1% total stroke	
Non-linearity ±% total stroke	
Ratiometric sensitivity per mm±3%	
Summed output voltage	
(Va+Vb) ±20%	
Total stroke ratio	
Input impedance	
Load resistance (per coil)	
Temperature error maximum % total stroke/°C	

OUTPUT SCHEMATIC

20 10

3VRMS at 5kHz (sinewave) Greater than 20MΩ at 500Vdc -55 to +200 IP66 $R = \frac{Va - Vb}{Va + Vb}$ 0.441 1 0.0441 0.7V/V 0.882 Greater than 150Ω Greater than 50kΩ (non reactive)

0.0030

Ratiometric configuration

Please consult our sales office for details

Please consult our sales office for details

ø5.60/5.50

ø3.94

64.00

Thread M3 - 0.5 15.0 min long

Retracted

44.00

5 flying leads 28AWG

screened and sleeved

1 metre min long

(screen not connected)

ø7.95/8.05

ac output schematic

- 456665

Extended

 $\frac{Va - Vb}{Va + Vb} = 0$

Electrical stroke E

AVAILABILITY

ORDERING CODE

DIMENSIONS

Note: drawings not to scale

Electrical stroke E Mechanical stroke M (non captive shaft) Weight (maximum) mm mm

g

20

22

47 (15g for sensor and core only)

$\Im 11 \text{mm}_{\text{LVDT}}$ SPECIAL

This high accuracy LVDT displacement transducer has been designed for use in the ratiometric configuration and has a compact size, with stroke lengths from 25mm to 75mm. This design has self-aligning rod end bearing mounting and features an outer sliding sleeve which protects the movable core whilst enhancing the rigidity of the transducer during operation. Suited to suspension and throttle position feedback applications in premier classes of motorsport.

PERFORMANCE

Electrical stroke E		mm	25	50
		±	12.5	25
Input voltage and	d frequency	l.	3VRM	S a
Insulation resista	nce		Great	er t
Operational temp	perature	°C	-30 to) +
Storage tempera	ture	°C	-55 to) +
Environmental pr	rotection		IP66	
Electrical output I to position	R proportio	nal	$R = \frac{1}{2}$	Va - Va -
Electrical output I from null	R at extrem ±1% total s		0.5	0.
Non-linearity	±% total s	troke	0.5	0.
Ratiometric sensi	tivity per m	m	0.04	0.
Summed output v (Va+Vb)	•	±20%	0.641	0.
Input impedance			Great	er t
Load resistance (per coil)		Great	er t
Temperature erro	or maximun % total stro		0.003	80

OUTPUT SCHEMATIC

AVAILABILITY

ORDERING CODE

50 75 5.0 37.5 at 2.5kHz (sinewave) than $20M\Omega$ at 500Vdc130 135 - Vb + Vb .5 0.5 .5 0.5 .02 0.0133 .872 0.761 than 200Ω than $50k\Omega$ (non reactive)

See Ø8mm Special LVDT output schematic, page 16

Please consult our sales office for details

D45371/.....

Electrical stroke (total) mm

ELECTRICAL CONNECTIONS SPECIAL Ø8mm

5 flying leads 28AWG, screened and sleeved 1000mm long

SPECIAL Ø11mm

5 flying leads 26AWG, screened and sleeved 500mm long

Ratiometric connection configuration Phasing notes

With blue and black leads common, the output on the yellow lead will be in-phase with the red lead (input) as the shaft retracts from the null position.

Pennv+Giles

A Curtiss-Wright Company

Penny+Giles - one of the world's major suppliers of measurement and control sensors

throttle pedal position

gear select position indication

hydraulic reservoir level

front and rear suspension movement

throttle actuator position steering angle position

gearbox actuator position

clutch pedal position

clutch actuator position

brake balance measurement

brake pad/disc wear indication

www.pennyandgiles.com

Penny & Giles Position sensors and joysticks for commercial and industrial applications.

15 Airfield Road Christchurch Dorset BH23 3TG United Kingdom + 44 (0) 1202 409409 + 44 (0) 1202 409475 Fax sales@pennyandgiles.com

36 Nine Mile Point Industrial Estate Cwmfelinfach Gwent NP11 7HZ United Kingdom +44 (0) 1495 202000 +44 (0) 1495 202006 Fax sales@pennyandgiles.com

12701 Schabarum Avenue Irwindale CA 91706 USA +1 626 337 0400 +1 626 337 0469 Fax us.sales@pennyandgiles.com

Straussenlettenstr. 7b 85053 Ingolstadt, Germany +49 (0) 841 61000 +49 (0) 841 61300 Fax info@penny-giles.de

The information contained in this brochure on product applications should be used by customers for guidance only. Penny+Giles Controls Ltd makes no warranty or representation in respect of product fitness or suitability for any particular design application, environment, or otherwise, except as may subsequently be agreed in a contract for the sale and purchase of products. Customer's should therefore satisfy themselves of the actual performance requirements and subsequently the products suitability for any particular design application and the environment in which the product is to be used.

Continual research and development may require change to products and specification without prior notification. All trademarks acknowledged.

© Penny+Giles Controls Ltd 2005

Innovation In Motion

